Introduction

When Colonel William C. Rogers bequeathed his “Triple R Ranch” to the University of Wyoming in 2002, he stated in his will that the 320-acre parcel of forested land in southeast Wyoming’s Laramie Mountains should be used, in part, for research relating to the improvement of forestry and wildlife resources (Rogers, 2002). One could argue that such research begins with the study of air, water, and soil—three natural resources that wildlife and forests depend upon.

This paper summarizes Rogers Research Site (RRS) Bulletin 6, which focuses on soil as a natural resource. Understanding the ability and capacity of soil to support an ecosystem plays an important role in land-management decisions (U.S. Forest Service, 2017), including those involving both forestry and wildlife resources.

Objectives

Our objectives were to map the soils of RRS to provide important baseline data for future studies at the site that will be carried out by UW faculty and staff members, undergraduate and graduate students, and others.

Materials and Methods

Soil inventory efforts began in 2009 and continued after the 2012 Arapaho Fire, which burned ~98,000 acres in the north Laramie Mountains near Laramie Peak, including RRS lands. The high-intensity fire killed the majority of ponderosa pine (*Pinus ponderosa*), and also changed soil characteristics, which are discussed in other papers in this section.

Lead author Larry Munn completed his field work in 2014, using standard mapping methods to map the soils of RRS. In 2018, Munn and co-author Robert Waggener worked with Shawn Lanning in the Wyoming Geographic Information Science Center (WyGISC) to create five digital soils maps, including the one in this paper (Fig. 1). Backdrop images for the maps were taken in 2009, three years before the Arapaho Fire, and in 2015, three years after the fire. Munn also created a schematic cross-section of ridge showing representation of common locations of soil mapping units on slope positions at RRS.

Results and Discussion

RRS has (1) thin to moderately deep and coarse-textured soils, which support coniferous forests on hillsides and ridge tops; and (2) thick, dark, fine-textured soils in areas where the water table is high, which support herbaceous vegetation in meadows and riparian zones. The representative soils for mapping units at RRS are classified as the following four series: Alderon (RRS-01, an Alfisol), Cathedral taxajunct (RRS-02, an Entisol), Dalecreek (RRS-03, a Mollisol), and Kovich (RRS-04, a Mollisol) (Fig. 1).

See RRS Bulletin 6 to learn more about the soils at RRS, including a discussion that addresses the question: why these soils? The publication is available on the James C. Hageman Sustainable Agriculture Research and Extension Center website at http://bit.ly/RogersResearchSite.

Acknowledgments

Much appreciation is extended to Shawn Lanning, a Geographic Information System research scientist and data manager with WyGISC, for working with our team to create the digital soils maps. Funding and support for the lead author’s soil mapping project at RRS were provided by the Wyoming Agricultural Experiment Station and U.S. Department of Agriculture McIntire-Stennis program. Many others helped in our efforts to publish RRS Bulletin 6, and they are acknowledged in the bulletin.

Literature Cited

Rogers, W. C., 2002, Amended living trust of Williams C. Rogers, 18 p.

Contact Information

Robert Waggener at robertw@uwyo.edu.

Keywords: Rogers Research Site, soils mapping, forestry research

PARP: X:1

1Department of Ecosystem Science and Management; 2now retired; 3Department of Civil and Architectural Engineering; 4Wyoming Agricultural Experiment Station; 5James C. Hageman Sustainable Agriculture Research and Extension Center.
Figure 1. General soils map of the Rogers Research Site, showing the boundaries of the Alderon, Dalecreek, and Kovich soils, and the Cathedral taxajunct. (Soils mapping by lead author Larry Munn; digital GIS and cartography work by Shawn Lanning, WyGISC; base map from Esri World Topographic Map).